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Using 180 pb−1 of data collected with the CDF II detector at the Tevatron, we measure the first
two moments of the hadronic invariant mass-squared distribution in charmed semileptonic B decays.
From these we determine the non-perturbative Heavy Quark Effective Theory parameters Λ and
λ1 used to relate the B meson semileptonic branching ratio to the CKM matrix element |Vcb|.
For a minimum lepton momentum of 0.7 GeV/c in the B rest frame we measure the first two

moments of the D∗∗ → D(∗)π component to be 〈m2
D∗∗〉 = (5.83 ± 0.16stat ± 0.08syst) GeV2/c4 and

〈(m2
D∗∗ − 〈m2

D∗∗〉)2〉 = (1.30 ± 0.69stat ± 0.22syst) GeV4/c8. Combining these with the discrete
mass terms from the D and D∗ mesons, we find the total moments to be 〈M2

Xc
〉 − m2

D = (0.467 ±
0.038stat ± 0.068syst) GeV2/c4 and 〈(M2

Xc
− 〈M2

Xc
〉)2〉 = (1.05± 0.26stat ± 0.13syst) GeV4/c8, where

mD is the spin-averaged D mass. The systematic error is dominated by the uncertainties in the
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world-average branching ratios used to combine the D, D∗, and D∗∗ contributions. The analysis
makes no assumptions about the shape or resonant structure of the D∗∗ → D(∗)π invariant mass
distribution.

PACS numbers: 13.20.He, 12.15.Hh, 12.39.Hg

I. INTRODUCTION

In order to constrain the length of the side opposite
the angle β in the Cabibbo-Kobayashi-Maskawa (CKM)
unitarity triangle, a precise measurement of the ratio
|Vub|/|Vcb| is needed. The matrix element |Vcb| is gen-
erally extracted from semileptonic B decays. Currently,
the most precise method is based on the measurement
of the inclusive semileptonic partial width into charm,
Γsl = Γ(B → Xclνl). The Operator Product Expan-
sion (OPE) applied to Heavy Quark Effective Theory
(HQET) relates the experimental determination of Γsl to
|Vcb| [1, 2]. The relationship takes the form of an expan-
sion in inverse powers of the B mass, mB. At each order
in the expansion, new free non-perturbative parameters
enter: one (Λ) at order 1/mB, two (λ1 and λ2) at order
1/m2

B
, six at order 1/m3

B
, etc. In order to extract |Vcb|

from Γsl some external information on these parameters
is needed.

The same theoretical framework that predicts the value
of Γsl predicts the value of any weighted integral of
the differential rate dΓsl/dsH , provided the weight is a
smooth function of sH ≡ M2

Xc
. Using weight functions

(sH − m2
D) and (sH − 〈sH〉)2, with mD = 0.25mD +

0.75mD∗, one can define the first two moments of the
hadronic mass distribution:

M1 =

∫ s
max

H

smin

H

dsH

(

sH − m2
D

) 1

Γsl

dΓsl

dsH

,

M2 =

∫ s
max

H

smin

H

dsH (sH − 〈sH〉)2 1

Γsl

dΓsl

dsH

, (1)

which are simply the shifted mean and variance of the
M2

Xc
distribution in semileptonic charmed decays of B

mesons. The moments are not sensitive to |Vcb|, but
they are more sensitive to the non-perturbative parame-
ters of HQET than Γsl itself is. Therefore, measuring the
moments provides a useful constraint on the HQET pa-
rameters which improves the overall precision on |Vcb| as
determined from Γsl. This is the purpose of this analysis.
Since λ2 is well determined from the values of the hyper-
fine mass splittings in the B and D meson systems [2],
only Λ and λ1 are studied here.

The sH distribution in B− → X0
c l−νl decays can be

split into three contributions corresponding to X0
c =

D0, D∗0, D∗∗0. Here D∗∗0 stands for any neutral charmed
state, resonant or not, other than D0, D∗0. The differ-

ential mass-squared spectrum can be written as:

1

Γsl

dΓsl

dsH

=
Γ0

Γsl

· δ(sH − m2
D0) +

Γ∗

Γsl

· δ(sH − m2
D∗0)

+

(

1 − Γ0

Γsl

− Γ∗

Γsl

)

· f∗∗(sH) , (2)

where Γsl is now the inclusive B− semileptonic width,
Γ0 and Γ∗ are the exclusive B− partial widths to D0l−νl

and D∗0l−νl respectively, and f∗∗(sH) is the normal-
ized hadronic invariant mass-squared distribution in the
D∗∗0 channel. We use world-average values of Γ0/Γsl,
Γ∗/Γsl, mD0 and mD∗0 from the Particle Data Group [3]
and concentrate on measuring f∗∗(sH). In this way, we
have only to measure the invariant mass distribution for
the D∗∗0 component without having to determine the
D0, D∗0 components or the relative normalizations be-
tween those and the D∗∗0 channel. The D∗∗0 spectrum
is not well known, and includes, at least, two narrow and
two wide states, together with a possible non-resonant
D(∗)nπ contribution. The measurement of the D∗∗0 spec-
trum is the main task of this analysis. We assume that
the D(∗)πl−νl decays of B− saturate the difference be-
tween its inclusive semileptonic decay rate and the sum
of its exclusive decay rates to D0l−νl and D∗0l−νl. We
neglect all modes with additional pions in the final state,

as well as D∗∗0 → D
(∗)+
s K−.

Only D(∗)+π− decays (charge conjugated channels are
implicitly included throughout the paper) are recon-
structed. Contributions to the sH distribution from
decays with neutral particles are included by applying
isospin factors to the charged modes. Feed-down from
one channel to another due to unmeasured neutral parti-
cles is subtracted statistically using the data themselves
and isospin relations, as explained in Section III.

II. DATA ANALYSIS

The analysis uses a data sample of pp collisions at√
s = 1.96 TeV with an integrated luminosity of about

180 pb−1, collected between February 2002 and August
2003 with the upgraded Collider Detector at the Fer-
milab Tevatron (CDF II). A description of the detector
can be found in [4]. The relevant components for this
analysis include a tracking system composed of a silicon
strip vertex detector (SVX II) surrounded by an open
cell drift chamber system (COT). The SVX II detector
comprises five concentric layers of double-sided sensors
located at radii between 2.5 and 10.6 cm, while the COT
provides 96 measurements (including axial and stereo)
out to a radius of 132 cm. The central tracking sys-
tem is immersed in a 1.4 T solenoidal magnetic field.
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Two sampling calorimeters surround the magnetic coil.
A set of proportional chambers inside the electromagnetic
calorimeter provides information on the shower profile for
use in electron identification. Muon candidates are iden-
tified with two sets of multi-layer drift chambers, one
located outside the calorimeters and the other behind an
additional 60 cm-thick iron shield.

Decays B → D(∗)+π−l−X , where l stands for elec-
tron or muon, were recorded using a trigger that re-
quires a lepton l and a track displaced from the inter-
action point [5]. The lepton and the displaced track
must have transverse momentum pT in excess of 4 GeV/c
and 2 GeV/c respectively. The displaced track’s im-
pact parameter with respect to the beamline has to ex-
ceed 120 µm and be below 1 mm. Events which pass
the trigger are recorded for further analysis. Only well-
reconstructed tracks with pT ≥ 0.4 GeV/c are retained.
Track parameters are corrected for the ionization energy
loss appropriate to the mass hypothesis under considera-
tion. A Monte Carlo sample of B → D∗∗lνl events based
on the ISGW2 [6] and Goity-Roberts [7] matrix elements
and including a detailed simulation of the CDF II de-
tector based on the GEANT [8] package has been used
throughout the analysis. In accordance with our assump-
tion, only D∗∗ → D(∗)π decays are generated.

Events with D∗+(→ D0π+
∗

)l− and D+l− combina-
tions are reconstructed in the decay channels D0 →
K−π+, K−π+π−π+, K−π+π0 and D+ → K−π+π+.
Tracks with the appropriate charge combination are re-
quired to be consistent with a common vertex in three
dimensions. One of the tracks in the vertex must fulfill
the displaced trigger requirements. Suitable ranges are
selected in the D0 (1.84–1.89 GeV/c2) and D+ (1.84–
1.89 GeV/c2) mass distributions. For the D∗+ chan-
nel, an additional charged track (π+

∗
) is required, such

that the M(D0π+
∗

)−M(D0) mass difference lies between
0.142 and 0.147 GeV/c2. The D0 → K−π+π0 chan-
nel is reconstructed from the satellite peak in the K−π+

mass distribution (1.50–1.70 GeV/c2). In this case the
M(K−π+π+

∗
) − M(K−π+) mass difference is required

to be between 0.142 and 0.155 GeV/c2. Duplicate re-
moval is performed in the D0 → K−π+π−π+ channel:
when two D∗+ candidates share all five tracks, differing
only in the kaon mass assignment, the candidate with
the K−π+π−π+ mass closer to the nominal D0 mass is
retained. No attempt has been made to further identify
kaons and pions.

After the selection of D∗+l− and D+l− combina-
tions, we obtain 3890 ± 63, 2994 ± 57, 6638 ± 98 and
14416 ± 202 signal events in the K−π+, K−π+π−π+,
K−π+π0 and K−π+π+ channels, respectively. Combi-
natorial backgrounds, estimated from sidebands of the
M(D+) and M(D0π+

∗
)−M(D0) distributions, have been

subtracted. The quoted yield in the D+ channel has
been rescaled by a factor 0.96 to account for the back-
ground from D+

s → K+K−π+ decays where the K+ is
assigned the pion mass. Figure 1 shows on the left the
M(D0π+

∗
) − M(D0) distributions for D0 decaying into

either K−π+ or K−π+π−π+, and for D0 → K−π+π0 ,
while the D+ → K−π+π+ mass distribution is plotted
on the right.

The D(∗)+l− vertex (the B vertex) is reconstructed
in three dimensions and required to be at least 500 µm
away from the beam line. An additional pion (π−

∗∗
) is

then added to create full D+(∗)π−l− candidates. The
π−

∗∗
’s trajectory is required to be at most 2.5 standard

deviations away from the B vertex, and at least three
standard deviations away from the beam line. These cuts
were optimized using the B → D∗∗lνl Monte Carlo for
the signal, and wrong-sign π+

∗∗
l− combinations in data

for the background. The measured mass distributions in
the D∗+π∗∗ and D+π∗∗ channels are shown in Fig. 2.

III. BACKGROUND AND EFFICIENCY

CORRECTIONS

The most important background sources are combi-
natorial background under the D+ and D∗ mass peaks,
prompt tracks (from fragmentation or the underlying
event) that fake π∗∗ candidates, and feed-down from
D∗+ → D+π0 decays into the D+ channel. Data side-
bands are used to assess combinatorial background un-
der the D+ mass and D∗+–D0 mass-difference peaks,
and wrong-sign π+

∗∗
l− combinations in data to character-

ize the prompt background to the π∗∗ candidates. The
wrong-sign pion-lepton sample is subtracted from the
right-sign sample, after performing side-band subtraction
in both. A possible difference between the rate of prompt
background with the right and the wrong π∗∗ charge has
been studied with a sample of fully reconstructed B de-
cays (B− → J/ΨK−, B0 → D(∗)−π+, B− → D0π−)
and found to be at most 4%. This has been included in
the systematic error. The bias in the background sub-
traction introduced by using the same wrong-sign sam-
ple for both the optimization of the selection and the fi-
nal background subtraction has been studied using boot-
strap [9] copies of the data and found to be smaller than
15% of the statistical error on the moments. This up-
per bound on the bias has been added as an additional
systematical error.

Since we do not reconstruct neutral particles, events
with a decay B− → D∗+π−

∗∗
l−νl with the D∗+ decay-

ing into D+π0 constitute an irreducible background to
the signal channel B− → D+π−

∗∗
l−νl. Using isospin

symmetry, the background rate and D+π−

∗∗
invariant

mass can be obtained from the D0π−

∗∗
invariant mass in

B− → D∗+π−

∗∗
l−νl decays with D∗+ → D0π+

∗
, which

we fully reconstruct, after correcting for the relative ef-
ficiency using Monte Carlo. A small physics background

(around 1% in rate), coming mostly from B → D
(∗)
s D(∗)

decays with the D
(∗)
s decaying semileptonically, is sub-

tracted using Monte Carlo predictions. Background from
tracks faking a lepton has been studied by looking at
wrong-sign D(∗)+l+ combinations. It has been found that
the background subtraction procedure outlined above
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FIG. 1: Left: Mass difference ∆m∗ = M(D0π+
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) − M(D0) in the D0 → K−π+ and D0 → K−π+π+π− channels (narrow
peak) and ∆m∗ = M(K−π+π+

∗
) − M(K−π+) in the D0 → K−π+π0 channel (broad peak). Right: Mass distribution for the

D+ → K−π+π+ channel. The signal areas are shaded; sideband regions are also indicated.
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FIG. 2: Sideband-subtracted invariant mass distribution for the D∗+π∗∗ channels (left) and for the D+π∗∗ channel (right).
The mass regions shown are limited at 3.5 GeV/c2 for illustration only. No explicit mass cut is applied in the analysis.

effectively removes any such background. Finally, the
background from B → D(∗)πτντ decays has been stud-
ied with Monte Carlo and found to have a negligible effect
on the determination of the moments.

Since only the shape of the mass-squared distribution
for the D∗∗ component (f∗∗(sH) in Eq. (2)) is being mea-
sured, the relevant efficiency corrections are those that
can bias the mass-squared distribution, along with the
relative efficiency for the D∗+ and D+ components of
the D∗∗ piece. Both efficiencies are obtained, as a func-
tion of the mass M(D∗∗), from the Monte Carlo simula-
tion. We have checked the Monte Carlo relative efficiency

predictions as a function of the π∗∗ transverse momen-
tum by applying the π∗∗ selection cuts to decay tracks
from D and D∗ mesons. The efficiency variation in the
data agrees well with the simulation. Where small dif-
ferences have been found, corrections have been derived
from these Monte Carlo–data comparisons.

To compare the moments with theoretical predictions,
they must be measured with a well defined cut on p∗

l
, the

lepton momentum in the B rest frame. Since we do not
attempt to measure the boost of the B, we cannot access
p∗

l
directly in data. Instead, acceptance corrections are

derived from Monte Carlo that turn our gradual trigger
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turn-on as a function of p∗
l

into a sharp threshold at p∗
l

=
0.7 GeV/c, thereby correcting our measurement of the
moments to a cut p∗

l
> 0.7 GeV/c. The value 0.7 GeV/c

was chosen in order to minimize the correction. Because
of the negative correlation between lepton momentum
in the B rest frame and D∗∗ mass, the correction itself
can depend on the detailed D∗∗ mass spectrum in Monte
Carlo. In order to assess the possible systematic error,
the default B decay model has been compared to a näıve
phase-space B semileptonic decay model. The differences
in the ensuing correction factors as a function of M(D∗∗)
are considered as systematic errors.

IV. RESULTS

The D(∗)+π− mass distribution is shown in Fig. 3 af-
ter background subtraction and efficiency and acceptance
corrections. The first and second moments of the D∗∗

)
2

) (GeV/c - π(*)+
m(D

2 2.5 3 3.5 4 4.5 5

)2
yi

el
d 

/ (
20

 M
eV

/c

-20

0

20

40

60

80

-1CDF Run II   L=180pb

lν - l - π)+*( D→ - B

FIG. 3: Fully corrected invariant mass distribution
m(D(∗)+π−). The number of events in each bin has been
background subtracted and corrected for mass-dependent and
D∗/D+ relative efficiency corrections. The plotted errors take
into account all corrections and subtractions.

component of the mass-squared distribution, m1 and m2,
are determined by simply computing the mean and vari-
ance of the distribution shown in Fig. 3, without any
assumption about the shape or rate of its several compo-
nents:

m1 ≡ 〈m2
D∗∗〉 = (5.83 ± 0.16stat ± 0.08syst) GeV2/c4

m2 ≡ 〈(m2
D∗∗ − 〈m2

D∗∗〉)2〉 =

(1.30 ± 0.69stat ± 0.22syst) GeV4/c8 ,

with a 61% positive correlation. The full moments of
the hadronic mass-squared distribution, M1 and M2, are
determined by combining m1 and m2 with the D and D∗

pieces, obtained from world-average values [3]:

M1 ≡ 〈M2
Xc

〉 − m2
D =

(0.467 ± 0.038stat ± 0.019exp ± 0.065BR) GeV2/c4

M2 ≡ 〈(M2
Xc

− 〈M2
Xc

〉)2〉 =

(1.05 ± 0.26stat ± 0.08exp ± 0.10BR) GeV4/c8 ,

with a 69% positive correlation between M1 and M2.
Here “BR” refers to the uncertainty coming from the
branching ratios needed for the combination of the D,
D∗ and D∗∗ pieces. For the exclusive branching ratios
to D and D∗, all available information [3] coming from
charged and neutral B decays has been combined using
isospin invariance, leading to Γ0/Γsl = 0.203± 0.015 and
Γ∗/Γsl = 0.550± 0.026 with about 30% positive correla-
tion. The isospin-related partial widths (not the branch-
ing ratios) of B+ and B0 are assumed to be identical.

Finally, using the predictions in [2], the HQET parame-
ters Λ and λ1 are determined. After applying constraints
on the other HQET parameters coming from the known
B and D hyperfine mass splittings we find, in the pole
scheme: Λ ≡ Λpole = (0.397 ± 0.078stat ± 0.027exp ±
0.064BR ± 0.058theo) GeV and λpole

1 = (−0.184 ±
0.057stat ± 0.017exp ± 0.022BR ± 0.077theo) GeV2, with
a 79% negative correlation. Similarly, we extract the
equivalent HQET parameters in the 1S scheme: m1S

b
≡

MΥ/2−Λ1S = (4.654± 0.078stat ± 0.027exp ± 0.064BR ±
0.089theo) GeV and λ1S

1 = (−0.277±0.049stat±0.017exp±
0.022BR ± 0.094theo) GeV2, with a 77% positive correla-
tion.

The statistical and systematic errors in the extraction
of the D∗∗ moments, the full moments, and the HQET
parameters in the pole-mass scheme are presented in Ta-
ble I. Statistical errors dominate the measurements of
m1 and m2 while experimental systematic errors are all
smaller. The main experimental systematics are com-
puted from the differences in the results when we apply
or omit a correction for the ∼ 60 MeV/c2 mass resolution
in the K−π+π0 channel or the M(D∗∗)-dependent effi-
ciency correction from data. Similarly, we considered the
difference in results obtained using Monte Carlo efficiency
and acceptance corrections calculated with ISGW2 and
Goity-Roberts matrix elements or phase space as a sys-
tematic error. Other experimental systematics include
uncertainties on the level of the prompt background
(studied with a fully reconstructed B sample), a possible
bias due to having used the same data sample to model
the background in the optimization process and to sub-
tract the background from the data (studied by repeat-
ing the optimization on bootstrap copies of the data),
and uncertainties on D branching fractions used in the
analysis.

Uncertainties in the inclusive and exclusive semilep-
tonic B branching ratios become important when com-
bining m1 and m2 with the D0 and D∗0 pieces to obtain
M1 and M2, the moments of the entire charm mass dis-
tribution. Theoretical uncertainties become dominant in
the extraction of the HQET parameters Λ and λ1. The
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Error ∆m1 ∆m2 ∆M1 ∆M2 ∆Λ ∆λ1

(GeV2/c4) (GeV4/c8) (GeV2/c4) (GeV4/c8) (GeV) (GeV2)
Statistical 0.16 0.69 0.038 0.26 0.078 0.057
Total systematic 0.08 0.22 0.068 0.13 0.091 0.082

Mass resolution 0.02 0.13 0.005 0.04 0.012 0.009
Efficiency (data) 0.03 0.13 0.006 0.05 0.014 0.011
Efficiency and acceptance (MC) 0.06 0.05 0.016 0.03 0.017 0.006
Background scale 0.01 0.03 0.002 0.01 0.003 0.002
Background bias 0.02 0.10 0.004 0.03 0.006 0.006
Physics background 0.01 0.02 0.002 0.01 0.004 0.002
D+/D∗+ branching ratios 0.01 0.02 0.002 0.01 0.004 0.002
D+/D∗+ efficiency 0.02 0.03 0.004 0.01 0.005 0.002
B semileptonic branching ratios — — 0.065 0.10 0.064 0.022
ρ1 — — — — 0.041 0.069
Ti — — — — 0.032 0.031
αs — — — — 0.018 0.007
mb, mc — — — — 0.001 0.008
Choice of p∗

l cut — — — — 0.019 0.009

TABLE I: Statistical and systematic uncertainties in the measurements of the D∗∗ and full moments and in the extraction of
Λ and λ1 in the pole scheme.

largest contribution to the theoretical systematic error
is that estimated by varying the unknown third order
HQET parameters in the ranges ρ1 = 1

2 (0.5 GeV)3 ±
1
2 (0.5 GeV)3, Ti = (0.0 GeV)3 ± (0.5 GeV)3. Finally,
acceptance corrections have been computed for two al-
ternative p∗

l
cuts, 0.5 and 0.9 GeV/c. The moments ob-

tained this way are different physical quantities and nu-
merically different from those obtained for the default p∗

l

cut at 0.7 GeV/c. However, if HQET describes the data,
they should all lead to compatible values of the HQET
parameters. The three sets of parameters are found to
be equal within errors. Differences between them have
been considered as additional systematic uncertainties.

In summary, we have presented a measurement of the
first two moments of the hadronic mass-squared distri-
bution in semileptonic B decays to charm by combin-
ing our measurement of the D(∗)+π− mass spectrum
with the known masses and branching ratios to Dlν and
D∗lν taken from the Particle Data Group compilation [3].
These channels together are assumed to fully account
for the inclusive semileptonic decay width of B mesons
to charm. The moments are then used to extract the
two leading Heavy Quark Effective Theory parameters,
Λ and λ1, in both the pole mass and the 1S mass schemes.
Within HQET the results are in agreement with previous
determinations at e+e− machines [10], mostly at higher
values of p∗

l
, and our precision in the moments is com-

parable or slightly better. The experimental techniques
and systematic uncertainties are very different from those
at electron-positron colliders. Our measurements, when
combined with moments of the lepton energy in semilep-

tonic B decays [11] and photon energy in b → sγ transi-
tions [12] measured elsewhere, will help pinpoint the val-
ues of the non-perturbative HQET parameters [13]. This
will sharpen the experimental determination of |Vcb| and
allow tests of the underlying assumptions of the theoret-
ical framework, such as quark-hadron duality.
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de Ciencia y Tecnoloǵıa, Spain; and in part by the Euro-
pean Community’s Human Potential Programme under
contract HPRN-CT-2002-00292, Probe for New Physics.

[1] A. Falk, M. Luke, M. Savage, Phys. Rev. D 53, 2491
(1996); M. Gremm, A. Kaputsin, Phys. Rev. D55, 6924

(1997); A. Falk, M. Luke, Phys. Rev. D 57, 424 (1998).



9

[2] C. W. Bauer, Z. Ligeti, M. Luke, A. V. Manohar, Phys.
Rev. D 67, 054012 (2003).

[3] S. Eidelman et al., Phys. Lett. B592, 1 (2004).
[4] D. Acosta et al. (CDF Collab.), Phys. Rev. D68, 072004

(2003).
[5] B. Ashmanskas et al., Nucl. Instrum. Meth. A518, 532

(2004).
[6] D. Scora, N. Isgur, Phys. Rev. D 52, 2783 (1995).
[7] J. L. Goity, W. Roberts, Phys. Rev. D 51, 3459 (1995).
[8] R. Brun, F. Carminati, CERN Programming Library

Long Write-up W5013 (1993).
[9] B. Efron, Ann. Stat. 7, 1 (1979); A. Stuart, J. K. Ord,

Kendall’s Advanced Theory of Statistics, Vol. 1, 5th Ed.,
(Oxford University Press, New York, 1987).

[10] D. Cronin-Hennessy et al. (CLEO Collab.), Phys. Rev.
Lett. 87 251808 (2001); M. Battaglia et al., Phys. Lett.
B556, 41 (2003); B. Aubert et al. (BABAR Collab.),
Phys. Rev. D 69, 111103 (2004).

[11] H. Mahmood et al., (CLEO Collab.), Phys. Rev. D 67,
072001 (2003); M. Battaglia et al., Phys. Lett. B556, 41
(2003); B. Aubert et al. (BABAR Collab.), Phys. Rev. D
69, 111104 (2004).

[12] S. Chen et al. (CLEO Collab.), Phys. Rev. Lett. 87,
251807 (2001).

[13] C. W. Bauer, Z. Ligeti, M. Luke, A. V. Manohar,
M. Trott, Phys. Rev. D 70, 094017 (2004).


